人形机器人在复杂地形中的运动控制曾是行业“阿喀琉斯之踵”。传统方法依赖预编程规则,面对动态环境(如地震废墟、建筑工地)时,机器人常因缺乏自适应能力而“举步维艰”。BeamDojo框架的出现改写了这一局面——通过强化学习(RL)与多模态感知的深度融合,宇树科技G1机器人已能实现“梅花桩上打太极”“平衡木疾走”等高难度动作[[6]][[8]]。本文将从技术细节、场景还原与开发者视角三维度展开解析。
BeamDojo: Learning Agile Humanoid Locomotion on Sparse Footholds
*附件:BeamDojo.pdf
BeamDojo的训练策略如同“先学走,再学飞”:
# 示例:BeamDojo的奖励函数设计(伪代码)
reward = 0
if foot_contact:
reward = 1.5 * (1 - abs(foot_position_error)) # 精准落脚奖励(误差< 2cm时奖励最大)
reward -= 0.2 * abs(body_tilt_angle) # 姿态稳定惩罚(倾斜角>15°时触发强惩罚)
reward = 0.1 * (1 - action_jerkiness) # 动作平滑性奖励,避免机械抖动[[4]]
通过64线LiDAR以20Hz频率扫描环境,BeamDojo生成实时三维地形图(精度达±3mm)。结合语义分割技术,机器人可区分“安全区域”“危险边缘”与“动态障碍”。例如,在模拟化工厂巡检场景中,G1能识别管道裂缝(宽度>5mm)并自动标记为危险区域[[6]][[9]]。
在2025年CES展会上,G1机器人展示了震撼全场的**“平衡木太极”**:
部署于某核电站的G1机器人,执行管道巡检任务时展现惊人能力:
**工程师张磊(化名)**在GitHub社区分享经验:
“BeamDojo的落地绝非易事。我们曾在真实地形训练中遭遇‘奖励稀疏’问题——机器人因长期无法获得正反馈而‘躺平’。最终通过引入好奇心驱动(Curiosity-driven)机制,鼓励探索未知区域,才突破瓶颈[[4]]。此外,LiDAR点云数据的噪声处理耗费了团队两周时间,最终采用动态滤波算法才解决误检问题。”
BeamDojo的突破标志着人形机器人进入“智能进化快车道”:
地址:
https://why618188.github.io/beamdojo/
Traversing risky terrains with sparse footholds poses a significant challenge for humanoid robots, requiring precise foot placements and stable locomotion. Existing approaches designed for quadrupedal robots often fail to generalize to humanoid robots due to differences in foot geometry and unstable morphology, while learning-based approaches for humanoid locomotion still face great challenges on complex terrains due to sparse foothold reward signals and inefficient learning processes. To address these challenges, we introduce BeamDojo, a reinforcement learning (RL) framework designed for enabling agile humanoid locomotion on sparse footholds. BeamDojo begins by introducing a sampling-based foothold reward tailored for polygonal feet, along with a double critic to balancing the learning process between dense locomotion rewards and sparse foothold rewards. To encourage sufficient trail-and-error exploration, BeamDojo incorporates a two-stage RL approach: the first stage relaxes the terrain dynamics by training the humanoid on flat terrain while providing it with task terrain perceptive observations, and the second stage fine-tunes the policy on the actual task terrain. Moreover, we implement a onboard LiDAR-based elevation map to enable real-world deployment. Extensive simulation and real-world experiments demonstrate that BeamDojo achieves efficient learning in simulation and enables agile locomotion with precise foot placement on sparse footholds in the real world, maintaining a high success rate even under significant external disturbances.
**(a) Training in Simulation. **BeamDojo incorporates a two-stage RL approach.
**(b) Deployment. **The robot-centric elevation map, reconstructed using LiDAR data, is combined with proprioceptive information to serve as the input for the actor.
Many excellent works inspire the design of BeamDojo.
免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
如有疑问请发送邮件至:bangqikeconnect@gmail.com