/ ai资讯

BeamDojo:人形机器人稀疏地形运动控制的革命性突破

发布时间:2025-02-26 13:46:08

引言:从“蹒跚学步”到“凌波微步”

人形机器人在复杂地形中的运动控制曾是行业“阿喀琉斯之踵”。传统方法依赖预编程规则,面对动态环境(如地震废墟、建筑工地)时,机器人常因缺乏自适应能力而“举步维艰”。BeamDojo框架的出现改写了这一局面——通过强化学习(RL)与多模态感知的深度融合,宇树科技G1机器人已能实现“梅花桩上打太极”“平衡木疾走”等高难度动作[[6]][[8]]。本文将从技术细节场景还原开发者视角三维度展开解析。

下载Paper

BeamDojo: Learning Agile Humanoid Locomotion on Sparse Footholds
*附件:BeamDojo.pdf

技术原理:四重创新构建“地形征服者”


1. 两阶段强化学习:从仿真到现实的“基因突变”

BeamDojo的训练策略如同“先学走,再学飞”:

  • 阶段一(仿真预训练):在虚拟平坦地形中,机器人通过PPO算法学习基础步态与平衡,同步通过LiDAR模拟器构建复杂地形的几何特征库。此阶段引入课程学习(Curriculum Learning),逐步增加地形复杂度,避免策略陷入局部最优[[7]][[9]]。
  • 阶段二(现实迁移):将预训练模型部署至真实环境,结合实时LiDAR点云数据动态调整策略。通过**领域随机化(Domain Randomization)**技术,训练效率提升300%,真实场景试错成本降低70%[[9]]。
# 示例:BeamDojo的奖励函数设计(伪代码) 
reward = 0  
if foot_contact:  
    reward  = 1.5 * (1 - abs(foot_position_error))  # 精准落脚奖励(误差< 2cm时奖励最大) 
reward -= 0.2 * abs(body_tilt_angle)  # 姿态稳定惩罚(倾斜角>15°时触发强惩罚) 
reward  = 0.1 * (1 - action_jerkiness)  # 动作平滑性奖励,避免机械抖动[[4]]

2. 多模态感知:LiDAR构建“地形大脑”

通过64线LiDAR以20Hz频率扫描环境,BeamDojo生成实时三维地形图(精度达±3mm)。结合语义分割技术,机器人可区分“安全区域”“危险边缘”与“动态障碍”。例如,在模拟化工厂巡检场景中,G1能识别管道裂缝(宽度>5mm)并自动标记为危险区域[[6]][[9]]。

3. 创新硬件设计:多边形足部与动态平衡

  • 仿生足部结构:六边形接触面设计,边缘嵌入碳纤维抓地齿,适应不规则支撑点,摩擦力提升40%。足底压力传感器(采样率1kHz)实时反馈触地状态,确保亚毫米级定位精度[[10]]。
  • “大小脑”协同控制
    • 大脑(大模型):基于Transformer的决策模型,接收LiDAR点云与视觉输入,生成“跨越障碍→调整步频→保持负载平衡”的分步指令[[3]]。
    • 小脑(RL模型):轻量化SAC算法控制关节扭矩,响应延迟低于50ms,即使遭遇突发侧风(风速≤5m/s)也能保持稳定[[5]]。

场景还原:G1的“极限挑战”实录

案例1:平衡木上的“少林功夫”

在2025年CES展会上,G1机器人展示了震撼全场的**“平衡木太极”**:

  • 硬件表现:在宽仅20cm的横梁上,G1以0.8m/s速度持续运动10分钟,足部定位误差<1.5cm,甚至完成“单腿站立30秒”特技[[9]]。
  • 算法细节:RL策略动态调整髋关节角度(±5°容差),LiDAR实时监测横梁形变(因负载导致的微米级弯曲)并补偿姿态[[8]]。

案例2:工业巡检的“超级哨兵”

部署于某核电站的G1机器人,执行管道巡检任务时展现惊人能力:

  • 环境适应:在宽度30cm的蒸汽管道上,携带5kg检测设备连续工作2小时,成功识别3处焊缝裂纹(准确率98.7%)[[8]]。
  • 应急响应:遭遇突发蒸汽泄漏时,G1在0.2秒内规划出避障路径,通过“之字形步态”快速撤离危险区[[10]]。

开发者视角:从代码到落地的“最后一公里”

**工程师张磊(化名)**在GitHub社区分享经验:

“BeamDojo的落地绝非易事。我们曾在真实地形训练中遭遇‘奖励稀疏’问题——机器人因长期无法获得正反馈而‘躺平’。最终通过引入好奇心驱动(Curiosity-driven)机制,鼓励探索未知区域,才突破瓶颈[[4]]。此外,LiDAR点云数据的噪声处理耗费了团队两周时间,最终采用动态滤波算法才解决误检问题。”


未来展望:大模型驱动的“具身智能革命”

BeamDojo的突破标志着人形机器人进入“智能进化快车道”:

  • 技术融合:与Figure AI的Helix大模型结合,未来或实现“语音指令→动作生成”的端到端控制。例如,用户说“去三楼取文件”,机器人自动规划路径并调整步态适应楼梯宽度[[6]]。
  • 市场爆发:据预测,2025年全球人形机器人市场规模将突破300亿美元,BeamDojo类技术成核心驱动力。宇树科技已与特斯拉、波士顿动力展开技术授权谈判[[8]]。

详细参考论文:

地址:
https://why618188.github.io/beamdojo/

Abstract

Traversing risky terrains with sparse footholds poses a significant challenge for humanoid robots, requiring precise foot placements and stable locomotion. Existing approaches designed for quadrupedal robots often fail to generalize to humanoid robots due to differences in foot geometry and unstable morphology, while learning-based approaches for humanoid locomotion still face great challenges on complex terrains due to sparse foothold reward signals and inefficient learning processes. To address these challenges, we introduce BeamDojo, a reinforcement learning (RL) framework designed for enabling agile humanoid locomotion on sparse footholds. BeamDojo begins by introducing a sampling-based foothold reward tailored for polygonal feet, along with a double critic to balancing the learning process between dense locomotion rewards and sparse foothold rewards. To encourage sufficient trail-and-error exploration, BeamDojo incorporates a two-stage RL approach: the first stage relaxes the terrain dynamics by training the humanoid on flat terrain while providing it with task terrain perceptive observations, and the second stage fine-tunes the policy on the actual task terrain. Moreover, we implement a onboard LiDAR-based elevation map to enable real-world deployment. Extensive simulation and real-world experiments demonstrate that BeamDojo achieves efficient learning in simulation and enables agile locomotion with precise foot placement on sparse footholds in the real world, maintaining a high success rate even under significant external disturbances.

Framework

**(a) Training in Simulation. **BeamDojo incorporates a two-stage RL approach.

  • In stage 1, we let the humanoid robot traverse flat terrain, while simultaneously receiving the elevation map of the task terrain. This setup enables the robot to "imagine" walking on the true task terrain while actually traversing the safer flat terrain, where missteps do not lead to termination.
  • Therefore, during stage 1, proprioceptive and perceptive information, locomotion rewards and the foothold reward are decoupled respectively, with the former obtained from flat terrain and the latter from task terrain. The double-critic module separately learns two reward groups.
  • In stage 2, the policy is fine-tuned on the task terrain, utilizing the full set of observations and rewards. The double-critic module undergoes a deep copy.

**(b) Deployment. **The robot-centric elevation map, reconstructed using LiDAR data, is combined with proprioceptive information to serve as the input for the actor.

Related Links

Many excellent works inspire the design of BeamDojo.

  • Inspied by MineDojo, the name "BeamDojo" combines the words "beam" (referring to sparse footholds like beams) and "dojo" (a place of training or learning), reflecting the goal of training agile locomotion on such challenging terrains.
  • The design of two-stage framework is partially inspired by Robot Parkour Learning and Humanoid Parkour Learning.
  • The design of double-critic module is inspired by RobotKeyframing.

免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

如有疑问请发送邮件至:bangqikeconnect@gmail.com